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ABSTRACT
Polybrominated diphenyl ethers (PBDEs) are a class of recalcitrant and bioaccumulative halogenated compounds that have
emerged as a major environmental pollutant. PBDEs are used as a flame-retardant and are found in consumer goods such as
electrical equipment, construction materials, coatings, textiles and polyurethane foam (furniture padding). Similar in structure to
polychlorinated biphenyls (PCBs), PBDEs resist degradation in the environment. Less brominated PBDEs like tetra-, penta- and
hexa- demonstrate high affinity for lipids and can accumulate in the bodies of animals and humans. Breast milk from North
American women contained much higher amounts of PBDEs than levels in breast milk from Swedish women, indicating that North
American exposures to PBDEs may be particularly high. Evidence to date suggests that tetra- and penta-BDEs are likely to be the
more toxic and bioaccumulative of the PBDE compounds, compared to octa- and deca-congeners. PBDEs are sold as mixtures,
under names such as “pentabromodiphenyl ether” and “octabromodiphenyl ether.” The pentabromo product is a mixture of
tetra-BDEs and penta-BDEs in approximately equal amounts. Pentabromo consists of PBDEs that are believed to be the most toxic.
This mixture has been banned by the European Union, but is still used in North America. The United States is the leading producer
and user of pentabromo. In August 2003, the State of California passed a bill to phase out the use of penta- and octa-PBDE by
2008. The toxicology of PBDEs is not well understood, but PBDEs have been associated with tumors, neurodevelopmental toxicity
and thyroid hormone imbalance. The neurotoxic effects of PBDEs are similar to those observed for PCBs. Children exposed to
PBDEs are prone to subtle but measurable developmental problems. It is presumed that PBDEs are endocrine disruptors, but
research in this area is scant. Further studies are imperative in a multitude of health and environmental disciplines to determine the
adverse effects and mode of action of this widespread emerging pollutant on human health.

RECEIVED: REVISED AND ACCEPTED: SEPTEMBER 19, 2003

REPRINT REQUESTS: KEYWORDS:
Muhammad Akmal Siddiqi, PhD
Marshfield Clinic Research Foundation
1000 North Oak Avenue
Marshfield, WI 54449
Phone: 715-389-7585
Fax: 715-389-3319
Email: siddiqi.muhammad@mcrf.mfldclin.edu

Pentabromodiphenyl ether; PBDEs; Fire retardants; Persistent
organic pollutants; Halogenated compounds; Neurotoxins;
Endocrine disruptors; Thyroid dysfunction; Environmental
pollutants; Adipose tissue

281



States, which does not regulate PBDEs because their
environmental fate and human health risks have only
recently begun to emerge. The Priority Toxic Pollutants list
produced by the United States Environmental Protection
Agency does not contain any of the brominated diphenyl
ethers. However California, following the lead of the EU,
recently became the first state to pass a bill that will phase
out the use of penta- and octa-BDE by 2008.11

WHAT ARE PBDES?
PBDEs have been used since the 1960s. They are synthetic
compounds used as additives to retard fire and flames in a
variety of commercial and household products. The rela-
tively weak carbon-bromine bond is thermally-labile. The
thermal energy releases bromine radicals that intercept
carbon radicals to decrease flame, while simultaneously
reducing heat and carbon monoxide production.3,5

Commercial PBDEs are manufactured by bromination of
diphenyl ethers resulting in a mixture of diphenyl ethers
containing tetra-, penta-, hepta-, octa-, and deca-congeners
in various percentages.12-14 PBDEs are structurally similar to
polychlorinated biphenyls (PCBs) (figure 1). There are 209
theoretically possible congeners divided into 10 congener
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Figure 1. A general structure of polybrominated diphenyl ether (PBDE),
polychlorinated biphenyl (PCB), polybrominated biphenyl (PBB), and nitrofen.
Name of the congener is representative of the total number of bromines (Br) or
chlorines (Cl) and their respective position on each ring.

Herbicide Nitrofen

PCB or PBB depending on Chlorine (CI) or Bromine (Br) substitution

Polybrominated diphenyl ether (PBDE)

INTRODUCTION

In September 2001, the European Commission (EC) over
the concern for human health and environmental safety,
brought a proposal to the European Union (EU) that would
ban the use of penta- and octa-brominated diphenyl ethers
(BDE) fire retardants. The EU voted to accept the EC pro-
posal to ban the use of penta-and octa-BDE by August 2004
and also to extend the ban to the use of deca-BDE by
January 2006.1

To address how these and other chemicals effect human and
and wildlife health when released into the environment, the
EU recently established CREDO–Cluster of Research into
Endocrine Disruption in Europe.2 The study of brominated
flame retardants is one of CREDO’s four core projects.

Polybrominated diphenyl ethers (PBDEs) are used in paints,
plastics, foam furniture padding, textiles, rugs, curtains,
televisions, building materials, airplanes and automobiles.
PBDEs constitute 5% to 30% of some of these products by
weight.3,4-8 In 1999, approximately 98% of the global demand
for penta-BDE was used in North America.9,10

Sweden has already imposed a stringent environmental
labeling law that has forced some manufacturers to reduce
PBDEs in their products.3 This is in contrast to the United



groups from mono- to deca-BDE. They are numbered accor-
ding to the system originally designed for PCBs by the
International Union of Pure and Applied Chemistry.14,15

Annual global production of PBDEs is estimated to be
around 67,125 metric tons (13% penta-, 5.7% octa- and 82%
deca-BDEs).16,17 The eight worldwide manufacturers of
PBDEs are located in the Netherlands, France, Great Britain,
Israel, Japan and the United States. Bromine deposits in 
the United States are found principally in Michigan and
Arkansas. Two companies, Albemarle Corporation, (form-
erly known as Ethyl Corporation, Richmond, VA) and Great
Lakes Chemical Company (El Dorado, AR), both with their
production facilities in Arkansas, manufacture more than
95% of the total organobromine compounds produced in the
United States.4,18,19 No brominated fire retardants are
produced in Michigan. 

PBDEs are commercially available in three technical mixtures
as penta-, octa- and deca-brominated diphenyl ethers. Each
mixture is not exclusively a pure combination of penta-,
octa-, or deca-congeners, but rather contains a higher or
lower amount of the brominated congeners.13,19,20 For
example, tetra-BDE is a mixture of 41% tetra-, 45% penta-,
7% hexa- and 7% to 8% unspecified PBDEs. Penta-BDE
constitutes 50% to 60% penta, 24% to 38% tetra- and 4% to
8% hexa-BDE.4,19

PBDEs are seeded into, but are not covalently bound into
polymer matrices. Over time, they diffuse out of the polymer
matrix and become airborne and widely dispersed.14,21,22

Polyurethane foam exposed to ambient outdoor conditions
for 4 weeks becomes brittle, disintegrates and disperses
penta-PBDE containing fragments.23 PBDEs may be more
prone to environmental degradation than are PCBs because
carbon-bromine bonds are weaker than carbon-chlorine
bonds.24,25 The data on the extent of environmental degra-
dation are inadequate. Nonetheless, PBDEs are persistent
organic pollutants that remain in the environment for years
without any significant degradation. The less brominated
congeners are highly bioaccumulative and biomagnify in
human, fish and other animal adipose tissues. It is spe-
culated that PBDEs may cause a spectrum of chronic
diseases from cognitive disorder to hormonal and liver
dysfunction.14,26-33

More studies are needed to substantiate the evidence, as
most of the current knowledge is based on animal studies in
the lab. Some of the less brominated PBDEs are potential
toxins. Their pervasiveness in the environment and human
tissues resembles that of PCBs.19 PBDEs are being called
“the PCBs of the future.”

ENVIRONMENTAL CONTAMINATION

PBDEs have been detected in coastal and estuarine environ-
ments. They have also been found in the air, soil, sediments,
humans, wildlife, fish and other marine life, and sewage
treatment plant biosolids.14,34-39 They are released into the

environment at industrial manufacturing sites as well as leached
from common household products. The main non-point
source of PBDEs is household trash (e.g., furniture, bedding,
foam cushions, and electronics). In the United States, house-
hold waste is either deposited into landfills or incinerated.
No information is currently available on how much incin-
eration and/or leaching from the landfills contributes to
environmental contamination. Incomplete incineration may
contribute significantly to the environment. There are concerns
that incomplete incineration and fire accidents produce bro-
minated dioxins and furans which could be lethal in extremely
low doses.5,40

Once airborne, PBDEs are dispersed varying distances
deending upon meteorological conditions, airborne particle
size and extent of bromination.39 Moderate to highly bro-
minated congeners are found in air samples relatively close
to the source of pollution, while less brominated congeners
travel greater distances from the same source.41

Evidence of photolytic and microbial degradation of octa-
and/or deca-BDEs in the environment is lacking. It is assumed
that these highly brominated PBDEs may degrade to less
brominated congeners like tetra-, penta-, and hexa-BDEs in
the environment. Deca- and octa-BDEs, are known to
degrade photolytically to brominated dibenzofurans and
dioxins in the lab and under high temperature caused by
fires.5,42-44 Studies directed to distinguish between PBDEs
directly released and those arising from environmental
breakdown may provide some answers in this regard.

Deca- and octa-brominated congeners have lower bioaccum-
ulative and biological activities. More studies are needed to
determine their fate in the environment and their subsequent
health effects. Nonetheless, they remain a source of public
health concern3 in that they could degrade to less brominated,
more toxic congeners in the environment after release. The
less brominated congeners are believed to be more persistent
in the atmosphere and can potentially move long distances.6,45

There are a few studies that have investigated the concen-
tration of PBDEs in water.38 It is believed that their
presence in water does not pose health risks, as their
solubility and volatility in water is very low limiting their
redistribution.38 However, PBDEs are strongly retained in
sediments, soil and sewage sludge.46

BIOACCUMULATION IN NON-PRIMATES

In a study of different trophic levels of the North Sea food
web, the lipid levels of six major tri-, tetra-, penta- and
hexa-BDE congeners in fish were found comparable to the
levels in marine invertebrates. Biomagnification of more
than an order of magnitude occurred going from gadoid fish
to marine mammals.47

Another study tested the levels found in chickens. The total
concentration of PBDEs on a whole-weight basis in chic-
kens ranged from 1.7 ng/g in North Dakota to 39.4 ng/g in
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Arkansas. These concentrations were lower than levels
reported on a lipid-weight basis in fish and fish eating
mammals. The predominant congeners found were penta-
BDEs.48

BIOACCUMULATION IN HUMANS

PBDEs have been found in human blood, serum, adipose
tissue, breast milk, placental tissue and in the brain.3,19,26,49,50

Contrary to octa- and deca-congeners, tri- to hexa-BDEs
have a very high affinity for fat. They are resistant to meta-
bolism and can bioaccumulate in adipose tissues from
before birth until death.25,51-55

Human uptake is thought to be through inhalation, dermal
absorption and consumption of contaminated food. The
primary source of exposure to humans is believed to be
consumption of contaminated fish, poultry, meat and dairy
products. Occupational exposures may occur in computer and
electronic warehouses, and formulation facilities. Dismantling
and grinding polymer parts may increase the PBDE concen-
tration in the air.56

The non-occupational occurrence of PBDEs in individuals
from different developed countries is shown in table 1. The
predominant congeners detected in Swedish human tissue
samples were 2,2',4,4'-tetra BDE (PBDE-47); 2,2',4,4',
5-penta-BDE (PBDE-99); and 2,2',4,4',5,5'-hexa-BDE
(PBDE-153). Tissue levels ranged from 0.3 to 98.2 ng/g
lipid.3,52,57,58 Comparable levels of tetra- to hexa-BDEs
were also found in human adipose tissues from other coun-
tries indicating a worldwide increase and bioaccumulation in
humans.55,59,60

PBDEs have been increasing exponentially over the past 25
years in breast milk samples from Sweden.3 A recent Polish
study estimated a daily intake of PBDEs by adult humans at

51 ng/day, while breastfed infants accumulated more than
twice that amount (110 ng/day).49 The breast milk levels of
North American women indicate the highest body burden in
the world, 40 times higher than the highest levels reported
for Swedish women. The average level of PBDEs found in
breast adipose tissue of women from the San Francisco Bay
area are the highest on record at 86 ng/g lipid.61 The PBDEs
detected in breast milk include tri-, tetra-, penta-, and hexa-
but not hepta-, nona- or deca-congeners.62

Using human breast milk as a matrix, some European coun-
tries have successfully developed a body burden monitoring
system for a variety of environmental contaminants, including
PBDEs. It has been suggested that the same be done in the
United States.3,26,63,64

PBDE TOXICITY

The toxicity of PBDEs is not as well understood as that of
PCBs. PBDEs are endocrine disruptors and neurotoxins.
They are believed to cause liver tumors, neurodevelopmental
and thyroid dysfunctions. Exposure to polybrominated
biphenyls (PBBs), close molecular analogs of PBDEs, has
been associated with fatigue, reduced capacity to work,
increased sleep, headache, dizziness and irritability. These
symptoms often appear in combination with gastrointestinal
syndromes including diminished appetite, weight loss,
abdominal pain and diarrhea.29 Exposure to PBDEs may
present similar symptoms. At this time, no conclusive data is
available.

Neurotoxicity
Children and young adults are more prone to developmental
dysfunctions as a consequence of PBDE exposure. Neuro-
developmental toxicology has been linked to tetra- and
penta-BDE congener exposure.3,65 A single oral dose of
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tetra- or penta-BDE on day 10 following birth permanently
impaired spontaneous motor behavior, affected learning and
memory, and had permanent behavioral effects in mice.65-69

Penta-congeners have the most effect during a critical period
of neonatal brain development in mice.70 Studies using
14C-BDE-99 indicated concentrations in 10-day-old mice
brains comparable to PCBs that induced the same type of
behavioral effects.70

Phospholipase A2 (PLA2) activity has been linked with
learning and memory, and arachidonic acid (AA) has been
identified as a second messenger involved in synaptic
plasticity.71 PBDE-71, a 2,3,4,6-congener, significantly
stimulated 3H-AA release at concentrations as low as 10
µg/ml, while an octa-BDE failed to do so even at 50 µg/ml.
The release of 3H-AA was observed after only 5 to 10
minutes of exposure of cerebellar granule cells in culture.
Release of 3H-AA was stimulated through a cytosolic
PLA2/Ca++-independent PLA2.

The neurodevelopmental toxicology of PBDEs appears to
involve changes in the cholinergic system and may also be
related to altered thyroid homeostasis. It is generally accepted
that brain development is highly dependent on the thyroid
hormone. 

Thyrotoxicity
Hydroxy-PBDE congeners have structural similarities
with the thyroid hormones 3,5-diiodothyronine (T2),
3,3,5-triiodothyronine (T3) and 3,3,5,5-tetraiodothyronine
(thyroxine, T4). They have been reported to bind human
alpha- and beta-thyroid hormone receptors.72 PCBs and
PBDEs both alter thyroid hormone balance by disrupting
brain development.73-75 PBDEs also bind to cytosolic aryl
hydrocarbon receptors, thyroid hormone receptors, and
serum thyroid hormone binding proteins (i.e., transthyretin).
Specific congeners may decrease, increase, or mimic the
biological action of thyroid hormones owing to structural
similarities to these compounds. 

Short-term exposure to less-brominated PBDE congeners
interferes with thyroid function and disrupts hormonal
balance. Commercial formulations of penta-BDE reduce
thyroid hormone levels and induce thyroid hyperplasia in
rats. Penta-BDE also significantly reduced T4 levels in
mice.76-78 PBDE-47, a tetra-BDE formulation that predom-
inantly bioaccumulates in human and animal adipose tissue
also reduced thyroid hormones levels in rats. The effects
were additive when given simultaneously with PCBs and
chlorinated paraffins.31

Highly brominated PBDEs can also cause thyroid hormone
imbalance. Deca-BDE significantly increased the incidence
of thyroid hyperplasia and tumors among male and female
mice in a two-year feeding study.79 Octa-BDE administered
to rats for only 90 days resulted in thyroid changes.4 At a
deca-BDE and deca-bromobiphenyl manufacturing plant 4

workers among 35 exposed to the compounds exhibited
clinical hypothyroidism. At least 1 of the 4 was exposed to
deca-BDE alone, while no case of thyroid dysfunction was
observed among 89 unexposed workers.80

The mechanism of thyroid hormone disruption is not clear.
PBDEs may upregulate uridine diphosphate-glucuronosyl
transferase (UDPGT), which increases the rate of T4 con-
jugation and excretion.3 Conversely, PBDEs and their
metabolites may mimic T4 and/or T3. These latter hormones
are hydroxy-halogenated diphenyl ethers. In metabolic
studies of tetra-BDE, hydroxy-tetra-BDE metabolites were
found. These hydroxy-PBDEs may reduce T4 levels by
binding to thyroid hormone transport protein (transthyretin),
interfering with normal thyroid hormone transport, resulting
in decreased total thyroxine levels.72,81-83

A structurally similar 2,4-dichloro-4-nitro-diphenyl ether
preparation (nitrofen) that is used as an herbicide (figure 1)
is also thought to induce derangement of thyroid function.
Prenatal exposure to nitrofen resulted in a variety of congenital
anomalies related to severe fetal lung hypoplasia. Congenital
lung pathology associated with nitrofen exposure may be
due to the down regulation of thyroid dependent tran-
scription factor. Nitrofen non-competitively inhibits the
binding of T3 to the alpha-1 and beta-1 form of the thyroid
hormone receptor in vitro.84 Lung hypoplasia might represent
a secondary sign for thyroid function disturbance during
fetal development in utero.84, 85

Estrogenicity
PBDEs are also estrogen disruptors. In human T47D breast
cancer cells stably transfected with an estrogen responsive
luciferase reporter gene construct (pEREtata-Luc), 11 PBDEs
showed estrogenic potencies. The highest estrogenic activity
was observed for 2,2',4,4',6-, 2,4,4',6-, and 2,2',4,6'-congeners
(PBDE-100, 75 and 51). Activity appears to require two
ortho-(2,6)-bromine atoms on one phenyl ring and at least one
para bromine atom and nonbrominated ortho-meta or meta
carbons on the other phenyl ring.86 The same structure-activity
relationship has been suggested for PCBs in a competitive
binding assay in which the PCB congener with the highest
binding affinity for the estrogen receptor contained an
unsubstituted phenol ring with a para-hydroxy group.87

Some hydroxy-PBDEs were more potent inducers than
estradiol at higher concentrations. The concentrations of
PBDEs leading to 50% induction varied from 2.5 to 7.3 µM.
Several pure PBDE congeners as well as OH-PBDE are
agonistic of both alpha- and beta-receptors and stimulate
ER-mediated luciferase induction in vitro. This suggests that
PBDEs may produce more potent pseudoestrogens upon in
vivo metabolism that can compete with T4 for binding to
transthyretin.81 Other estrogen receptor-mediated pathways
affecting testis development,88 hepatic enzymes activity,89

and behavior90 may be affected as well.
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Carcinogenicity
PBDEs are alleged carcinogens in humans. One study implied
an association between adipose tissue levels of 2,2',4,4'-tetra-
BDE (PBDE-47) and the risk of non-Hodgkin lymphoma
among Swedish hospital cancer patients.57,58 Other studies
have cited similar associations.14,91,92 Polybrominated
biphenyls (PBBs) that resemble PBDEs but lack an ester
bond (-O-) between the two benzene rings, have also been
linked with higher risks of developing lymphoma and breast
cancer.93, 94

Radiolabeled tetra-BDE (14C-PBDE-47) covalently forms
reactive epoxide intermediates in rats and mice.82 Mechanistic
studies indicate that some congeners exhibit significant aryl
hydrocarbon receptor (Ah-R)-mediated effects. Specifically,
penta-congeners as opposed to tetra-congeners show high
affinity for Ah-R. A standard assay for dioxin-like compounds
involves the induction of ethoxyresorufin-o-deethylase
(EROD). In rats, commercial grade penta-BDEs are more
potent inducers of EROD than commercial PCBs like Aroclor
1254 (Monsanto Chemical Company, St. Louis, MO). The
penta-BDE mixture was more active at lower concentrations
than the model inducer 3-methylcholanthrene or most PCB
mixtures.3,95 These findings are in agreement with other
studies indicating penta-BDE induces EROD. Penta-BDE
suppresses Ah-R mediated immune response in mice.78

BDE-47, a component of commercial penta-BDE mixture, is
a major congener found in human and marine tissue. It also
induces EROD activities in rats but to a lower degree than
PCBs.31

Ah-R mediated activities of flame retardants have also
been explored using rat hepatoma cell line H-4-II E. In this
cell line a commercial penta-brominated formulation had
Ah-R binding affinities 10-2 to 10-5 times that of dioxin
(2,3,7,8-TCDD).96 Induction of EROD was strongest with
PBDEs 77, 100, 119, and 126, although the maximum
EROD activity was less than those induced by dioxin.97 In
another study in which 17 specific PBDE congeners were
used, 7 congeners acted as Ah-R agonists while 9 acted as
antagonists when administrated with 2,3,7,8-TCDD. The
agonist potencies of PBDEs were comparable to the
potencies of some mono-ortho PCBs.98

Additional evidence that PBDEs behave like PCBs and
dioxin-like compounds stems from the fact that simul-
taneous administration of tetra-BDE and PCBs results in
induction of EROD. The effects of PBDEs and PCBs were
synergistic, further suggesting that both the chemicals act
through the same biological mechanism.31

PBDE Metabolism
PBDEs can induce both phase I and phase II xenobiotic
metabolizing enzymes. Wistar rats exposed to Bromkal 70
(A German commercial penta-BDE mixture that is no longer
manufactured), induced the cytochrome P450 (CYP)-mediated
phase I metabolism enzymes CYP 1A1 and CYP 1A2 as
indicated by the increased activity of liver microsomal
7-EROD.95 Rat hepatoma cell line H-4-II E also indicated a

similar increase in liver microsomal 7-EROD.96 Phase II
induction was studied by administrating a lower brominated
congener mixture (24% tetra- and 50% penta-), higher
brominated congener mixture (45% hepta- and 30% octa-),
and deca-congener orally to rats for 14 days at a concentration
of 0.1 mmol/kg body weight. Both mixtures, but not the
deca-BDE, induce uridine diphosphate glucuronyl-transferase
(UDPGT).99 Bromkal 70 also induced UDPGT activity in
rats at the highest dose and decreased hepatic vitamin A and
serum T4 levels.30,100 The induced enzymes are thought to
metabolize the PBDEs in liver. 

Methoxy- and hydroxy- metabolites of PBDEs have been
detected in aquatic and mammalian species.101,102 PBDE-47
(2,2',4,4'-BDE) is transformed to HO-PBDEs in rats and
mice.82 Similarly, 3,5-dibromo-2-(2,4-dibromophenoxy)
phenol, a hydroxy-BDE, was identified in blood plasma of
Baltic salmon and a sponge (Tedania ignis) at levels com-
parable to the major PBDEs.101,103

Debromination of PBDEs is also believed to occur in
biological systems. Debromination proceeds more easily
than dechlorination since carbon-bromine bond is weaker
than carbon-chlorine linkage.24,25 Two debrominated
monomethoxy metabolites were reported after orally
dosing Sprague-Dawley rats with 14C-labelled BDE-99.102

Fish undergoing depuration exhibited higher ratio of 
BDE-154 to deca-BDE overtime indicative of debromi-
nation.45 This biotransformation of PBDEs could advance
through cytochrome P450 system by replacing the bromine
with hydrogen in a process called reductive debromination104

or by oxidative debromination.102

CONCLUSION

Polybrominated diphenyl ethers have become ubiquitous in
the environment in developed Western countries. The extent
and adverse health effects of their presence in the food
chain, air, soil, sediments and consumer products is begin-
ning to emerge. In the United States the levels of PBDEs in
humans, animals, fish and the environment are rising. Very
little information is available as to their human toxicity,
carcinogenicity and behavioral effects. The few studies
conducted on animal models are inconclusive. Tetra- to
hexa-congeners appear to have the greatest effect on fish
and mammalian nervous systems, thyroid and hepatic func-
tions, endocrine and reproductive systems. They may be
regarded as the PCBs of the future, but in contrast to point
sources of PCB pollution, PBDEs are more widespread and
enter the environment from more diverse sources. At this
time, no regulatory efforts are being pursued in the United
States at the federal level. California however, in August
2003, became the first state to pass a bill to phase out penta-
and octa-BDE by 2008. The flame retardant industry argues
that the benefits accrued through saving lives by fire preven-
tion outweigh the costs incurred by any medical consequences.
Over time however, this cost/benefit ratio is likely to shift.
In the meantime, it is imperative that a more aggressive
approach be taken to circumvent or regulate their use. More
clinical and translational studies are needed in a multitude of
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medical disciplines to determine how exposure to PBDEs
effects humans. Studies to discover new alternatives to
PBDEs and other similar fire retardants should be accele-
rated. Alternatives to PBDEs are being sought such as
aluminum trihydroxide, magnesium hydroxide along with
phosphorus and nitrogen based compounds.
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